revmc/compiler/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
//! EVM bytecode compiler implementation.

use crate::{Backend, Builder, Bytecode, EvmCompilerFn, EvmContext, EvmStack, Result};
use revm_interpreter::{Contract, Gas};
use revm_primitives::{Bytes, Env, Eof, SpecId, EOF_MAGIC_BYTES};
use revmc_backend::{
    eyre::{ensure, eyre},
    Attribute, FunctionAttributeLocation, Linkage, OptimizationLevel,
};
use revmc_builtins::Builtins;
use revmc_context::RawEvmCompilerFn;
use std::{
    borrow::Cow,
    fs,
    io::{self, Write},
    mem,
    path::{Path, PathBuf},
};

// TODO: Somehow have a config to tell the backend to assume that stack stores are unobservable,
// making it eliminate redundant stores for values outside the stack length when optimized away.
// E.g. `PUSH0 POP` gets fully optimized away, but the `store i256 0, ptr %stack` will still get
// emitted.
// Use this when `stack` is passed in arguments.

// TODO: Get rid of `cfg!(target_endian)` calls.

// TODO: Test on big-endian hardware.
// It probably doesn't work when loading Rust U256 into native endianness.

mod translate;
use translate::{FcxConfig, FunctionCx};

/// EVM bytecode compiler.
///
/// This currently represents one single-threaded IR context and module, which can be used to
/// compile multiple functions as JIT or AOT.
///
/// Functions can be incrementally added with [`translate`], and then either written to an object
/// file with [`write_object`] when in AOT mode, or JIT-compiled with [`jit_function`].
///
/// Performing either of these operations finalizes the module, and no more functions can be added
/// afterwards until [`clear`] is called, which will reset the module to its initial state.
///
/// [`translate`]: EvmCompiler::translate
/// [`write_object`]: EvmCompiler::write_object
/// [`jit_function`]: EvmCompiler::jit_function
/// [`clear`]: EvmCompiler::clear
#[allow(missing_debug_implementations)]
pub struct EvmCompiler<B: Backend> {
    name: Option<String>,
    backend: B,
    out_dir: Option<PathBuf>,
    config: FcxConfig,
    builtins: Builtins<B>,

    dump_assembly: bool,
    dump_unopt_assembly: bool,

    finalized: bool,
}

impl<B: Backend> EvmCompiler<B> {
    /// Creates a new instance of the compiler with the given backend.
    pub fn new(backend: B) -> Self {
        Self {
            name: None,
            backend,
            out_dir: None,
            config: FcxConfig::default(),
            builtins: Builtins::new(),
            dump_assembly: true,
            dump_unopt_assembly: false,
            finalized: false,
        }
    }

    /// Sets the name of the module.
    pub fn set_module_name(&mut self, name: impl Into<String>) {
        let name = name.into();
        self.backend.set_module_name(&name);
        self.name = Some(name);
    }

    fn is_aot(&self) -> bool {
        self.backend.is_aot()
    }

    fn is_jit(&self) -> bool {
        !self.is_aot()
    }

    /// Returns the output directory.
    pub fn out_dir(&self) -> Option<&Path> {
        self.out_dir.as_deref()
    }

    /// Dumps intermediate outputs and other debug info to the given directory after compilation.
    ///
    /// Disables dumping if `output_dir` is `None`.
    pub fn set_dump_to(&mut self, output_dir: Option<PathBuf>) {
        self.backend.set_is_dumping(output_dir.is_some());
        self.config.comments = output_dir.is_some();
        self.out_dir = output_dir;
    }

    /// Dumps assembly to the output directory.
    ///
    /// This can be quite slow.
    ///
    /// Defaults to `true`.
    pub fn dump_assembly(&mut self, yes: bool) {
        self.dump_assembly = yes;
    }

    /// Dumps the unoptimized assembly to the output directory.
    ///
    /// This can be quite slow.
    ///
    /// Defaults to `false`.
    pub fn dump_unopt_assembly(&mut self, yes: bool) {
        self.dump_unopt_assembly = yes;
    }

    /// Returns the optimization level.
    pub fn opt_level(&self) -> OptimizationLevel {
        self.backend.opt_level()
    }

    /// Sets the optimization level.
    ///
    /// Note that some backends may not support setting the optimization level after initialization.
    ///
    /// Defaults to the backend's initial optimization level.
    pub fn set_opt_level(&mut self, level: OptimizationLevel) {
        self.backend.set_opt_level(level);
    }

    /// Sets whether to enable debug assertions.
    ///
    /// These are useful for debugging, but they do a moderate performance penalty due to the
    /// insertion of extra checks and removal of certain assumptions.
    ///
    /// Defaults to `cfg!(debug_assertions)`.
    pub fn debug_assertions(&mut self, yes: bool) {
        self.backend.set_debug_assertions(yes);
        self.config.debug_assertions = yes;
    }

    /// Sets whether to enable frame pointers.
    ///
    /// This is useful for profiling and debugging, but it incurs a very slight performance penalty.
    ///
    /// Defaults to `cfg!(debug_assertions)`.
    pub fn frame_pointers(&mut self, yes: bool) {
        self.config.frame_pointers = yes;
    }

    /// Sets whether to validate input EOF containers.
    ///
    /// **An invalid EOF container will likely results in a panic.**
    ///
    /// Defaults to `true`.
    pub fn validate_eof(&mut self, yes: bool) {
        self.config.validate_eof = yes;
    }

    /// Sets whether to allocate the stack locally.
    ///
    /// If this is set to `true`, the stack pointer argument will be ignored and the stack will be
    /// allocated in the function.
    ///
    /// This setting will fail at runtime if the bytecode suspends execution, as it cannot be
    /// restored afterwards.
    ///
    /// Defaults to `false`.
    pub fn local_stack(&mut self, yes: bool) {
        self.config.local_stack = yes;
    }

    /// Sets whether to treat the stack length as observable outside the function.
    ///
    /// This also implies that the length is loaded in the beginning of the function, meaning
    /// that a function can be executed with an initial stack.
    ///
    /// If this is set to `true`, the stack length must be passed in the arguments.
    ///
    /// This is useful to inspect the stack length after the function has been executed, but it does
    /// incur a performance penalty as the length will be stored at all return sites.
    ///
    /// Defaults to `false`.
    pub fn inspect_stack_length(&mut self, yes: bool) {
        self.config.inspect_stack_length = yes;
    }

    /// Sets whether to enable stack bound checks.
    ///
    /// Ignored for EOF bytecodes, as they are assumed to be correct.
    ///
    /// Defaults to `true`.
    ///
    /// # Safety
    ///
    /// Removing stack length checks may improve compilation speed and performance, but will result
    /// in **undefined behavior** if the stack length overflows at runtime, rather than a
    /// [`StackUnderflow`]/[`StackOverflow`] result.
    ///
    /// [`StackUnderflow`]: crate::interpreter::InstructionResult::StackUnderflow
    /// [`StackOverflow`]: crate::interpreter::InstructionResult::StackOverflow
    pub unsafe fn stack_bound_checks(&mut self, yes: bool) {
        self.config.stack_bound_checks = yes;
    }

    /// Sets whether to track gas costs.
    ///
    /// Disabling this will greatly improves compilation speed and performance, at the cost of not
    /// being able to check for gas exhaustion.
    ///
    /// Note that this does not disable gas usage in certain instructions, mainly the ones that
    /// are implemented as builtins.
    ///
    /// Use with care, as executing a function with gas disabled may result in an infinite loop.
    ///
    /// Defaults to `true`.
    pub fn gas_metering(&mut self, yes: bool) {
        self.config.gas_metering = yes;
    }

    /// Translates the given EVM bytecode into an internal function.
    ///
    /// NOTE: `name` must be unique for each function, as it is used as the name of the final
    /// symbol.
    pub fn translate<'a>(
        &mut self,
        name: &str,
        input: impl Into<EvmCompilerInput<'a>>,
        spec_id: SpecId,
    ) -> Result<B::FuncId> {
        ensure!(cfg!(target_endian = "little"), "only little-endian is supported");
        ensure!(!self.finalized, "cannot compile more functions after finalizing the module");
        let bytecode = self.parse(input.into(), spec_id)?;
        self.translate_inner(name, &bytecode)
    }

    /// (JIT) Compiles the given EVM bytecode into a JIT function.
    ///
    /// See [`translate`](Self::translate) for more information.
    ///
    /// # Safety
    ///
    /// The returned function pointer is owned by the module, and must not be called after the
    /// module is cleared or the function is freed.
    pub unsafe fn jit<'a>(
        &mut self,
        name: &str,
        bytecode: impl Into<EvmCompilerInput<'a>>,
        spec_id: SpecId,
    ) -> Result<EvmCompilerFn> {
        let id = self.translate(name, bytecode.into(), spec_id)?;
        unsafe { self.jit_function(id) }
    }

    /// (JIT) Finalizes the module and JITs the given function.
    ///
    /// # Safety
    ///
    /// The returned function pointer is owned by the module, and must not be called after the
    /// module is cleared or the function is freed.
    pub unsafe fn jit_function(&mut self, id: B::FuncId) -> Result<EvmCompilerFn> {
        ensure!(self.is_jit(), "cannot JIT functions during AOT compilation");
        self.finalize()?;
        let addr = self.backend.jit_function(id)?;
        debug_assert!(addr != 0);
        Ok(EvmCompilerFn::new(unsafe { std::mem::transmute::<usize, RawEvmCompilerFn>(addr) }))
    }

    /// (AOT) Writes the compiled object to the given file.
    pub fn write_object_to_file(&mut self, path: &Path) -> Result<()> {
        let file = fs::File::create(path)?;
        let mut writer = io::BufWriter::new(file);
        self.write_object(&mut writer)?;
        writer.flush()?;
        Ok(())
    }

    /// (AOT) Finalizes the module and writes the compiled object to the given writer.
    pub fn write_object<W: io::Write>(&mut self, w: W) -> Result<()> {
        ensure!(self.is_aot(), "cannot write AOT object during JIT compilation");
        self.finalize()?;
        self.backend.write_object(w)
    }

    /// (JIT) Frees the memory associated with a single function.
    ///
    /// Note that this will not reset the state of the internal module even if all functions are
    /// freed with this function. Use [`clear`] to reset the module.
    ///
    /// [`clear`]: EvmCompiler::clear
    ///
    /// # Safety
    ///
    /// Because this function invalidates any pointers retrieved from the corresponding module, it
    /// should only be used when none of the functions from that module are currently executing and
    /// none of the `fn` pointers are called afterwards.
    pub unsafe fn free_function(&mut self, id: B::FuncId) -> Result<()> {
        self.backend.free_function(id)
    }

    /// Frees all functions and resets the state of the internal module, allowing for new functions
    /// to be compiled.
    ///
    /// # Safety
    ///
    /// Because this function invalidates any pointers retrieved from the corresponding module, it
    /// should only be used when none of the functions from that module are currently executing and
    /// none of the `fn` pointers are called afterwards.
    pub unsafe fn clear(&mut self) -> Result<()> {
        self.builtins.clear();
        self.finalized = false;
        self.backend.free_all_functions()
    }

    /// Parses the given EVM bytecode. Not public API.
    #[doc(hidden)] // Not public API.
    pub fn parse<'a>(
        &mut self,
        input: EvmCompilerInput<'a>,
        spec_id: SpecId,
    ) -> Result<Bytecode<'a>> {
        let bytecode;
        let eof;
        match input {
            EvmCompilerInput::Code(code) => {
                bytecode = code;
                if spec_id.is_enabled_in(SpecId::OSAKA) && code.starts_with(&EOF_MAGIC_BYTES) {
                    eof = Some(Cow::Owned(Eof::decode(Bytes::copy_from_slice(code))?));
                } else {
                    eof = None;
                }
            }
            EvmCompilerInput::Eof(e) => {
                bytecode = &e.raw[..];
                eof = Some(Cow::Borrowed(e));
            }
        }
        if let Some(eof) = &eof {
            self.do_validate_eof(eof)?;
        }

        let mut bytecode = Bytecode::new(bytecode, eof, spec_id);
        bytecode.analyze()?;
        if let Some(dump_dir) = &self.dump_dir() {
            Self::dump_bytecode(dump_dir, &bytecode)?;
        }
        Ok(bytecode)
    }

    fn do_validate_eof(&self, eof: &Eof) -> Result<()> {
        if !self.config.validate_eof {
            return Ok(());
        }
        revm_interpreter::analysis::validate_eof_inner(eof, None).map_err(|e| match e {
            revm_interpreter::analysis::EofError::Decode(e) => e.into(),
            revm_interpreter::analysis::EofError::Validation(e) => {
                eyre!("validation error: {e:?}")
            }
        })
    }

    #[instrument(name = "translate", level = "debug", skip_all)]
    fn translate_inner(&mut self, name: &str, bytecode: &Bytecode<'_>) -> Result<B::FuncId> {
        ensure!(self.backend.function_name_is_unique(name), "function name `{name}` is not unique");
        let linkage = Linkage::Public;
        let (bcx, id) = Self::make_builder(&mut self.backend, &self.config, name, linkage)?;
        FunctionCx::translate(bcx, self.config, &mut self.builtins, bytecode)?;
        Ok(id)
    }

    #[instrument(level = "debug", skip_all)]
    fn finalize(&mut self) -> Result<()> {
        if self.finalized {
            return Ok(());
        }
        self.finalized = true;

        if let Some(dump_dir) = &self.dump_dir() {
            let path = dump_dir.join("unopt").with_extension(self.backend.ir_extension());
            self.dump_ir(&path)?;

            // Dump IR before verifying for better debugging.
            self.verify_module()?;

            if self.dump_assembly && self.dump_unopt_assembly {
                let path = dump_dir.join("unopt.s");
                self.dump_disasm(&path)?;
            }
        } else {
            self.verify_module()?;
        }

        self.optimize_module()?;

        if let Some(dump_dir) = &self.dump_dir() {
            let path = dump_dir.join("opt").with_extension(self.backend.ir_extension());
            self.dump_ir(&path)?;

            if self.dump_assembly {
                let path = dump_dir.join("opt.s");
                self.dump_disasm(&path)?;
            }
        }

        Ok(())
    }

    #[instrument(level = "debug", skip_all)]
    fn make_builder<'a>(
        backend: &'a mut B,
        config: &FcxConfig,
        name: &str,
        linkage: Linkage,
    ) -> Result<(B::Builder<'a>, B::FuncId)> {
        fn size_align<T>(i: usize) -> (usize, usize, usize) {
            (i, mem::size_of::<T>(), mem::align_of::<T>())
        }

        let i8 = backend.type_int(8);
        let ptr = backend.type_ptr();
        let (ret, params, param_names, ptr_attrs) = (
            Some(i8),
            &[ptr, ptr, ptr, ptr, ptr, ptr],
            &[
                "arg.gas.addr",
                "arg.stack.addr",
                "arg.stack_len.addr",
                "arg.env.addr",
                "arg.contract.addr",
                "arg.ecx.addr",
            ],
            &[
                size_align::<Gas>(0),
                size_align::<EvmStack>(1),
                size_align::<usize>(2),
                size_align::<Env>(3),
                size_align::<Contract>(4),
                size_align::<EvmContext<'_>>(5),
            ],
        );
        debug_assert_eq!(params.len(), param_names.len());
        let (mut bcx, id) = backend.build_function(name, ret, params, param_names, linkage)?;

        // Function attributes.
        let function_attributes = default_attrs::for_fn()
            .chain(config.frame_pointers.then_some(Attribute::AllFramePointers))
            // We can unwind in panics, which are present only in debug assertions.
            .chain((!config.debug_assertions).then_some(Attribute::NoUnwind));
        for attr in function_attributes {
            bcx.add_function_attribute(None, attr, FunctionAttributeLocation::Function);
        }

        // Pointer argument attributes.
        if !config.debug_assertions {
            for &(i, size, align) in ptr_attrs {
                let attrs = default_attrs::for_sized_ptr((size, align))
                    // `Gas` is aliased in `EvmContext`.
                    .chain((i != 0).then_some(Attribute::NoAlias));
                for attr in attrs {
                    let loc = FunctionAttributeLocation::Param(i as _);
                    bcx.add_function_attribute(None, attr, loc);
                }
            }
        }

        Ok((bcx, id))
    }

    #[instrument(level = "debug", skip_all)]
    fn dump_ir(&mut self, path: &Path) -> Result<()> {
        self.backend.dump_ir(path)
    }

    #[instrument(level = "debug", skip_all)]
    fn dump_disasm(&mut self, path: &Path) -> Result<()> {
        self.backend.dump_disasm(path)
    }

    #[instrument(level = "debug", skip_all)]
    fn verify_module(&mut self) -> Result<()> {
        self.backend.verify_module()
    }

    #[instrument(level = "debug", skip_all)]
    fn optimize_module(&mut self) -> Result<()> {
        self.backend.optimize_module()
    }

    #[instrument(level = "debug", skip_all)]
    fn dump_bytecode(dump_dir: &Path, bytecode: &Bytecode<'_>) -> Result<()> {
        {
            let file = fs::File::create(dump_dir.join("bytecode.txt"))?;
            let mut writer = io::BufWriter::new(file);
            write!(writer, "{bytecode}")?;
            writer.flush()?;
        }

        {
            let file = fs::File::create(dump_dir.join("bytecode.dbg.txt"))?;
            let mut writer = io::BufWriter::new(file);
            writeln!(writer, "{bytecode:#?}")?;
            writer.flush()?;
        }

        Ok(())
    }

    fn dump_dir(&self) -> Option<PathBuf> {
        let mut dump_dir = self.out_dir.clone()?;
        if let Some(name) = &self.name {
            dump_dir.push(name.replace(char::is_whitespace, "_"));
        }
        if !dump_dir.exists() {
            let _ = fs::create_dir_all(&dump_dir);
        }
        Some(dump_dir)
    }
}

/// [`EvmCompiler`] input.
#[allow(missing_debug_implementations)]
pub enum EvmCompilerInput<'a> {
    /// EVM bytecode. Can also be raw EOF code, which will be parsed.
    Code(&'a [u8]),
    /// Already-parsed EOF container.
    Eof(&'a Eof),
}

impl<'a> From<&'a [u8]> for EvmCompilerInput<'a> {
    fn from(code: &'a [u8]) -> Self {
        EvmCompilerInput::Code(code)
    }
}

impl<'a> From<&'a Vec<u8>> for EvmCompilerInput<'a> {
    fn from(code: &'a Vec<u8>) -> Self {
        EvmCompilerInput::Code(code)
    }
}

impl<'a> From<&'a Bytes> for EvmCompilerInput<'a> {
    fn from(code: &'a Bytes) -> Self {
        EvmCompilerInput::Code(code)
    }
}

impl<'a> From<&'a Eof> for EvmCompilerInput<'a> {
    fn from(eof: &'a Eof) -> Self {
        EvmCompilerInput::Eof(eof)
    }
}

#[allow(dead_code)]
mod default_attrs {
    use revmc_backend::Attribute;

    pub(crate) fn for_fn() -> impl Iterator<Item = Attribute> {
        [
            Attribute::WillReturn,      // Always returns.
            Attribute::NoSync,          // No thread synchronization.
            Attribute::NativeTargetCpu, // Optimization.
            Attribute::Speculatable,    // No undefined behavior.
            Attribute::NoRecurse,       // Revm is not recursive.
        ]
        .into_iter()
    }

    pub(crate) fn for_param() -> impl Iterator<Item = Attribute> {
        [Attribute::NoUndef].into_iter()
    }

    pub(crate) fn for_ptr() -> impl Iterator<Item = Attribute> {
        for_param().chain([Attribute::NoCapture])
    }

    pub(crate) fn for_sized_ptr((size, align): (usize, usize)) -> impl Iterator<Item = Attribute> {
        for_ptr().chain([Attribute::Dereferenceable(size as u64), Attribute::Align(align as u64)])
    }

    pub(crate) fn for_ptr_t<T>() -> impl Iterator<Item = Attribute> {
        for_sized_ptr(size_align::<T>())
    }

    pub(crate) fn for_ref() -> impl Iterator<Item = Attribute> {
        for_ptr().chain([Attribute::NonNull, Attribute::NoAlias])
    }

    pub(crate) fn for_sized_ref((size, align): (usize, usize)) -> impl Iterator<Item = Attribute> {
        for_ref().chain([Attribute::Dereferenceable(size as u64), Attribute::Align(align as u64)])
    }

    pub(crate) fn for_ref_t<T>() -> impl Iterator<Item = Attribute> {
        for_sized_ref(size_align::<T>())
    }

    pub(crate) fn size_align<T>() -> (usize, usize) {
        (std::mem::size_of::<T>(), std::mem::align_of::<T>())
    }
}